

Qualitative Inorganic Analysis

Radicals Included in Syllabus

Cation Radicals: Na^+ , K^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Al^{3+} , Cr^{3+} , Mn^{2+} , Fe^{3+} , Co^{3+} , Ni^{3+} , Cu^{2+} , Zn^{2+} .

Anion Radicals: F^- , Cl^- , Br^- , BrO_3^- , I^- , SCN^- , S^{2-} , SO_4^{2-} , $\text{S}_2\text{O}_3^{2-}$, NO_3^- , NO_2^- , PO_4^{3-} , BO_3^{3-} , CrO_4^{2-} / $\text{Cr}_2\text{O}_7^{2-}$, $\text{Fe}(\text{CN})_6^{4-}$, $\text{Fe}(\text{CN})_6^{3-}$

Insoluble Materials: Al_2O_3 , Fe_2O_3 , Cr_2O_3 , SnO_2 , SrSO_4 , BaSO_4 , CaF_2 .

Preliminary Tests for Basic Radicals

Experiment [A]: Heating in a dry fusion tube

Experiment	Observations		Inference
	At hot condition	At cold condition	
A pinch of sample is taken in a dry fusion tube and it was heated in flame until red-hot. N.B. For colour and black sample this test is generally non-conclusive	Yellow	White	Zn ²⁺ may be present
	Red to Black	Brown	Fe ²⁺ may be present
	White	White	Na ⁺ , K ⁺ , Cu ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Al ³⁺ may be present
	Brown / reddish vapour		NO ₂ ⁻ , NO ₃ ⁻ (of heavy metal) and/or Br ⁻ may be present
	Violet vapour		I ⁻ may be present

Experiment [B]: Flame test

Experiment	Observation		Inference
	Colour of flame	Colour through double blue glass	
A platinum wire was touched with conc. HCl as well as with the sample and it was kept in the flame	Golden yellow	Colourless	Na ⁺ may be present
	Violet	Crimson red	K ⁺ may be present
	Brick red		Ca ²⁺ may be present
	Crimson red		Sr ²⁺ may be present
	Apple green		Ba ²⁺ may be present
	Green		Cu ²⁺ /BO ₃ ³⁻ may be present
	Bluish green with bifurcation like snake tongue		Sn ²⁺ may be present

** Some times Ca²⁺ e.g. CaF₂ gives flame like Sr²⁺ but the colour is not persistent.

*** MnCl₂ also imparts a green colouration.

**** Sulfates of Ca²⁺, Ba²⁺, Sr²⁺ are at first reduced to sulfides by heating in a small filter paper in the reducing flame then the flame test is performed because sulfates are insoluble in conc. HCl.

❖ Modified Flame Test

Phosphates give a yellow flame like sodium and musk the colour of K⁺, Ca²⁺, Ba²⁺, and Sr²⁺. So in presence of PO₄³⁻ modified flame test is to be performed.

Test: 0.5 gm. of solid sample was boiled with 5 ml. of conc. H₂SO₄ and then it is cooled to room temperature. 2ml. of C₂H₅OH was added and allowed to stand. Now the liquid is decanted off and the residue was washed with water. Now flame test was performed as before.

Experiment [C]: Borax bead test
(Only for colour samples)

Experiment	Observation Colour of the bead (In oxidizing flame & in cold)	Inference
A transparent bead of borax was made in the platinum ring by heating. The red-hot bead was touched to the sample and was heated vigorously in oxidizing flame. Then it was cooled	Sapphire blue	Co^{2+} may be present
	Blue	Cu^{2+} may be present
	Yellow	Fe^{3+} may be present
	Emerald green	Cr^{3+} may be present
	Violet	Mn^{2+} may be present
	Reddish brown	Ni^{2+} may be present

Experiment [D]: Fusion test
(Only if Expt. C is positive & only for Mn^{2+} and Cr^{3+})

Experiment	Observation	Inference
i) A pinch of sample was fused with solid NaOH and fusion mixture ($\text{KNO}_3 + \text{Na}_2\text{CO}_3$) on a mica foil vigorously	Colour of the mass: Green	Mn^{2+} may be present
	Colour of the mass: Yellow	Cr^{3+} may be present
ii) Now the fused mass was dissolved in dil. CH_3COOH and then $(\text{CH}_3\text{COO})_2\text{Pb}$ was added	Pink colouration before adding $(\text{CH}_3\text{COO})_2\text{Pb}$	Mn^{2+} may be present
	Yellow ppt. after adding $(\text{CH}_3\text{COO})_2\text{Pb}$	Cr^{3+} may be present

When both are present, the green colour will mask the yellow
Then CH_3COOH was added and a pink colour was obtained: Indicates Mn^{2+} . Now the colour was discharged by NaNO_2 and then $(\text{CH}_3\text{COO})_2\text{Pb}$ was added: yellow ppt. was obtained: Cr^{3+} present.

Experiment [E]: Fluorescence test
(Only for Sn^{2+})

Experiment	Observation	Inference
A paste was made with 0.2gm. of sample; tin free zinc dust and few drops of conc. HCl in a beaker. The outer surface of a test tube, half filled with cold water, was moist with the paste and was held near the flame	Blue fluorescence was observed	Sn^{2+} may be present

Preliminary Tests for Acid Radicals

Experiment [A]: Test for sulfur group (except SO_4^{2-})

Experiment	Observation	Inference
A pinch of sample was heated with Zn-dust and dil. H_2SO_4	Smell of evolved H_2S gas (detected by $(\text{CH}_3\text{COO})_2\text{Pb}$ paper) / rotten egg smell	S^{2-} , SCN^- , $\text{S}_2\text{O}_3^{2-}$ (and/or) present

Experiment [B]: Test with dil. H_2SO_4

(Only if Expt. A is positive)

Experiment	Observation	Inference
A pinch of sample was heated with dil. H_2SO_4	H_2S gas evolved	Acid decomposable S^{2-}
	SO_2 gas with yellowish white turbidity	$\text{S}_2\text{O}_3^{2-}$ may be present
	Pale reddish brown vapour	NO_2^- may be present

Experiment [C]: Iodine azide test (in spot plate)

(Only if Expt. A is positive)

Experiment	Observation	Inference
A pinch of sample was stirred along with iodine azide ($\text{I}_2 + \text{NaN}_3$) and one drop of starch in a spot plate	Deep blue colour due to I_2 discharged	S^{2-} , SCN^- , $\text{S}_2\text{O}_3^{2-}$ (and/or) may be present

Experiment [D]: Test with Cu-turnings & conc. H_2SO_4

Experiment	Observation	Inference
A pinch of sample was heated with Cu-turnings and conc. H_2SO_4	Red or brown vapour	BrO_3^- , Br^- , NO_3^- , NO_2^- (and/or) may be present
	Violet vapour	I^- may be present
	Oily liquid	F^- may be present

Experiment [E]: Test with conc. H_2SO_4

(Only if Expt. D is positive)

Experiment	Observation	Inference
A pinch of sample was heated with few drops of conc. H_2SO_4	Violet vapour	I^- may be present
	Red or reddish vapour	BrO_3^- , Br^- , NO_2^- (and/or) may be present
	Oily liquid	F^- present & confirmed

Experiment [F]: Special spot test

Experiment	Observation	Inference
A pinch of sample was added to the mixture of FeCl_3 and FeSO_4 taken in a spot plate and was stirred	Blood red colour	SCN^- may be present
	Deep blue colour	$\text{Fe}(\text{CN})_6^{3-}$ and/or $\text{Fe}(\text{CN})_6^{4-}$ may be present

Experiment [G]: Ammonium molibdate test

Preparation of HNO_3 Extract

A small amount of sample was heated with conc. HNO_3 (2-3ml.) in a test tube till evolution of reddish brown vapour ceases (it also indicates that reducing agent is present).

If necessary filter or centrifuge...the filtrate is the desired extract.

Experiment	Observation	Inference
To a little amount of the extract ammonium molibdate reagent was added and was heated for some time	Canary yellow ppt.	PO_4^{3-} present & confirmed

**** Preserve the extract for future use in the tests for Mn^{3+} & Cr^{3+} during wet tests of basic radicals.

Experiment [H]: Test for BO_3^{3-}

Experiment	Observation	Inference
A pinch of sample was heated with a few drops of conc. H_2SO_4 and methanol (CH_3OH). The vapour coming through the mouth of the test tube was ignited	Vapour burns with green flame	BO_3^{3-} present & confirmed
A paste of the sample was made using 1-2 drops of conc. H_2SO_4 and CaF_2 . The paste was taken on a platinum wire and was held nearer to the oxidizing flame (not into the flame)	A green flame*,# originated	BO_3^{3-} present & confirmed

* If the flame is noticed without using CaF_2 then BO_3^{3-} & F^- both are present.

The green flame is due to formation of BF_3

Wet Tests for Acid Radicals

Solution preparation: If the sample is completely soluble in water and if there is no ppt. with Na_2CO_3 solution then proceed with aqueous solution.

If the sample is partly or completely insoluble in water prepare Na_2CO_3 extract.

(Preparation of Na_2CO_3 extract for each sample is recommended)

*** Na_2CO_3 Extract Preparation ***

To one part of sample add five times of Na_2CO_3 by weight. Then add 10-15 ml. of water and boil for 15-20 min. (use conical flask & glass funnel). Occasional addition of water is needed to maintain the amount of water. After complete boiling filter it and collect the Na_2CO_3 extract as filtrate.

N.B.: Preserve the residue for the tests of basic radicals.

[It is advised to start Na_2CO_3 extract preparation at the beginning of your new work and to perform the preliminary tests for both basic and acid radicals during the extract preparation. It saves the time.]

Experiment [A]: AgNO_3 test

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HNO_3 and few drops of AgNO_3 were added	White ppt. soluble in dil. NH_3 solution	Cl^- present
	White ppt. soluble in conc. NH_3 solution	Br^- present
	Yellowish white ppt. insoluble in liquor NH_3	I^- present

Experiment [B]: BaCl_2 test

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. CH_3COOH and few drops of BaCl_2 were added	White ppt. insoluble in conc. HCl	SO_4^{2-} present & confirmed

Experiment [C]: Test for oxidizing anions

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. H_2SO_4 and few drops of KI were added followed by two drops of starch	The solution became deep blue / blue / black	Oxidizing anions are present. $[\text{NO}_2^-$, CrO_4^{2-} , BrO_3^- , $\text{Fe}(\text{CN})_6^{3-}$, NO_3^- (very slow to react)]

Experiment [D]: Test for reducing anions

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. H_2SO_4 and two drops of KMNO_4 were added	The pink colour of was discharged	Reducing anions are present. $[\text{Br}^-, \text{I}^-, \text{S}_2\text{O}_3^{2-}, \text{Fe}(\text{CN})_6^{4-}, \text{S}^{2-}, \text{SCN}^-, \text{NO}_2^-, \text{Cl}^-$ (slow to react)]

Tests for Oxidizing Anions
(Only if Expt. C is positive)

Experiment [E]: Sulphanilic acid test
(Only if Expt. C is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract (also water extract) was acidified with dil. CH_3COOH and taken in a spot plate, then one drop each of sulphanilic acid and α -naphthyl amine was added in succession and was stirred	A pink colouration	NO_2^- present & confirmed
If NO_2^- is absent add Zn-dust to the resultant solution and stir	A pink colouration	NO_3^- present & confirmed
If NO_2^- is present add sulphamic acid / urea to discharge the pink colour then add Zn-dust to the resultant solution and stir	A pink colouration	NO_3^- present & confirmed

Experiment [F]: Test for BrO_3^-
(Only if Expt. C is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. H_2SO_4 and few drops of manganese sulphate (MnSO_4) were added and heated	A dark brown ppt. with intermediate red brown colouration	BrO_3^- present & confirmed
For detection of trace amount of BrO_3^- To one drop of reaction mixture add excess of sodium acetate (CH_3COONa) or ammonium acetate followed by benzidine reagent	A deep blue colouration	BrO_3^- present & confirmed

Experiment [G]: Test for CrO_4^{2-} / $\text{Cr}_2\text{O}_7^{2-}$
 (Only if Expt. C is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. CH_3COOH and few drops of $(\text{CH}_3\text{COO})_2\text{Pb}$ were added	A yellow precipitate	CrO_4^{2-} / $\text{Cr}_2\text{O}_7^{2-}$ present & confirmed

N.B.: If the colour of extract is yellow: indicates CrO_4^{2-} / $\text{Cr}_2\text{O}_7^{2-}$

Experiment [H]: Test for $\text{Fe}(\text{CN})_6^{3-}$
 (Only if Expt. C is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HCl and a pinch of fresh solid Mohr's salt was added	A deep blue colouration	$\text{Fe}(\text{CN})_6^{3-}$ present & confirmed

Tests for Reducing Anions
(Only if Expt. D is positive)

Experiment [I]: Test for S^{2-}
 (Only if Expt. D is positive)

Experiment	Observation	Inference
To a part of Na_2CO_3 extract few drops of sodium nitroprusside was added	A pink / violet colouration	S^{2-} present & confirmed

Experiment [J]: Test for $\text{S}_2\text{O}_3^{2-}$
 (Only if Expt. D is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. CH_3COOH and AgNO_3 solution was added quickly.	White ppt. turned yellow to brown to black	$\text{S}_2\text{O}_3^{2-}$ present & confirmed

Experiment [K]: Test for Br^- / I^-
(Only if Expt. D is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HCl; little CCl_4 was added then chlorine water was added drop wise with shaking	Colour of the CCl_4 layer turned Violet	I^- present & confirmed
	Colour of the CCl_4 layer turned Orange	Br^- present & confirmed

Experiment [L]: Test for SCN^- / $[\text{Fe}(\text{CN})_6]^{4-}$ / $[\text{Fe}(\text{CN})_6]^{3-}$
(Only if Expt. D is positive)

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HCl and few drops of FeCl_3 solution were added.	Blood red colour	SCN^- present & confirmed
	Deep blue ppt.	$[\text{Fe}(\text{CN})_6]^{4-}$ present & confirmed
	Brown / green colour	$[\text{Fe}(\text{CN})_6]^{3-}$ indicated

Experiment [M]: Test for F^-

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HCl and added to few drops of Zr(IV)-Alizarin-S reagent.	Red colour of reagent was discharged.	F^- present & confirmed

In Presence of One Another

Experiment [N]: Cl^- , Br^- , I^- in presence of one another

Experiment	Observation	Inference
A part of Na_2CO_3 extract was acidified with dil. HCl; little CCl_4 was added then chlorine water was added drop wise with shaking.	Colour of the CCl_4 layer turned Violet	I^- present & confirmed
Reaction with Cl_2 water was continued until violet colour is discharged. Then few more drops of Cl_2 water were added.	Colour of the CCl_4 layer turned Orange	Br^- present & confirmed
Br^- and I^- were removed from the extract by boiling the Na_2CO_3 extract with conc. HNO_3 and AgNO_3 solution was added.	White ppt. was obtained which is soluble in dil. NH_3	Cl^- present & confirmed

Additionally, chromyl chloride test is recommended for Cl^- (only if Expt. A is positive)

Experiment [O]: Chromyl Chloride Test

Experiment	Observation	Inference
A part of Na_2CO_3 extract was evaporated to dryness. Little amount of solid $\text{K}_2\text{Cr}_2\text{O}_7$ and few drops of conc. H_2SO_4 were added and heated.	Reddish orange vapour obtained.	Cl^- present
The orange vapour was absorbed in a drop of NaOH solution on a glass rod and transferred to spot plate. It was acidified with drop of H_2SO_4 and diphenyl carbazide reagent was added.	Violet colouration was obtained	Cl^- present & confirmed

Wet Tests for Basic Radicals

Preparation of Solution:

Aqueous solution: Sample was heated with water with shaking. If necessary, it was filtered to collect filtrate as desired aqueous solution.

HCl extract: The residue (if obtained above) was heated with conc. HCl with shaking and filtered.

Residue: Insoluble or aqua regia soluble or Gr-I cations (not in current syllabus)

Filtrate: Desired HCl extract.

HCl extract from the residue of Na_2CO_3 extract preparation: The residue was washed thoroughly with water and dissolved in conc. HCl with heating. It was filtered and filtrate was collected.

If Interfering acid radicals, viz. a) $[\text{Fe}(\text{CN})_6]^{3-}$ and $[\text{Fe}(\text{CN})_6]^{4-}$ b) F^- and BO_3^{3-} c) PO_4^{3-} present:

a) Removal of $[\text{Fe}(\text{CN})_6]^{3-}$ and $[\text{Fe}(\text{CN})_6]^{4-}$:

Residue from Na_2CO_3 extract preparation was fumed with a few drops of conc. H_2SO_4 over a low flame to decompose $[\text{Fe}(\text{CN})_6]^{3-}$ and $[\text{Fe}(\text{CN})_6]^{4-}$ completely. After cooling it was further heated with a little water and then filtered.

Residue: It may contain sulfates of Ca^{2+} , Ba^{2+} , Sr^{2+} : may be confirmed by flame test.

Filtrate: It was used for analyses of basic radicals as usual.

b) Removal of F^- and BO_3^{3-} :

Residue from Na_2CO_3 extract preparation was heated with a few drops of conc. HCl and ethanol (if BO_3^{3-} present) several times to dryness and finally conc. HCl extract was prepared by heating.

Experiment [A]: Group II $[\text{Cu}^{2+}]$

Experiment	Observation	Inference
For aqueous solution dil. HCl was added and for HCl extract, it was diluted with water. The solution was heated and to warmed solution H_2S was passed.	Black ppt. obtained	Cu^{2+} present
If ppt. obtained, it was filtered and H_2S was boiled off from the filtrate. The solution was neutralized with NH_4OH and 8 drops of dil. HCl per 5 ml of solution were added. It was warmed and H_2S was passed. If ppt. obtained, it was filtered. Filtrate was diluted with water and H_2S was passed. The process was continued to ensure complete precipitation.	Black ppt. obtained	Cu^{2+} present

Confirmatory Test: The ppt. obtained was boiled with dil. NaOH and filtered. Obtained ppt. was then dissolved with dil. HNO ₃ by boiling. To the clear solution obtained excess NH ₄ OH was added. It was filtered and filtrate was collected.	Deep blue filtrate obtained	Cu ²⁺ present
The filtrate was acidified with dil. acetic acid and K ₄ [Fe(CN) ₆] was added.	Chocolate ppt. obtained	Cu ²⁺ present & confirmed

Experiment [B]: Group IIIA [Fe³⁺, Al³⁺, Cr³⁺ and Mn²⁺]

Experiment	Observation	Inference
H ₂ S was boiled off from the filtrate of group II filtrate completely. It was boiled with 1 ml conc. HNO ₃ till no brown fumes.* 1 g. NH ₄ Cl and excess NH ₄ OH were added.	White / green / brown ppt. obtained	Fe ³⁺ , Al ³⁺ , Cr ³⁺ and / or Mn ²⁺ present

*If PO₄³⁻ present, it must be removed at this point by FeCl₃ method. So, follow the following method.

c) Removal of PO₄³⁻:

If PO₄³⁻ is confirmed by ammonium molibdate test, then it is to be confirmed whether PO₄³⁻ separation is required or not.

To few drops of solution excess NH₄OH was added. If ppt. obtained, PO₄³⁻ separation is mandatory.

Test for Fe³⁺: To few drops of solution NH₄SCN reagent was added. If deep red colour, Fe³⁺ confirmed.

To the solution, dil. NH₄OH was added drop wise to neutralize the acid. Minimum drops of dil. HCl were added just to dissolve the ppt. 2 - 3 ml. of conc. ammonium acetate per 10 ml. of solution was added. It was boiled and filtered.

Residue: Residue was washed with water and used for group IIIA treatment. [For Fe³⁺, Al³⁺, Cr³⁺ and / or Mn²⁺]

Filtrate: To the filtrate neutral FeCl₃ solution was added drop wise till a light TEA colour was attained. NH₄OH was added to it till ammoniacal. Then it was heated and filtered. Residue obtained was discarded and to the filtrate H₂S was passed to complete precipitation. It was filtered and the residue was used for treatment for group IIIB [See Expt. C, Treatment] and the filtrate was used for group IV [See Expt. D] analysis.

Treatment of Group IIIA

The ppt. was washed with water. Strong and fresh NaOH was added followed by a few drops of H₂O₂ solution and was shaken in the cold and then H₂O₂ was decomposed by heating. It was filtered.

Residue: *if available*

Experiment	Observation	Inference
Residue was divided into two parts 1. It was dissolved in dil. HCl and NH_4SCN reagent was added	Blood red colouration	Fe^{3+} present & confirmed
2. The remaining part was dissolved in dil. H_2SO_4 containing a pinch of Na_2SO_3 . SO_2 was boiled off completely. Then it was cooled down and a pinch of sodium bismuthate was added and shaken. It was allowed to settle.	Pink colouration	Mn^{2+} present & confirmed

Filtrate:

Experiment	Observation	Inference
Filtrate was divide into three parts 1. If yellow, one part was acidified with acetic acid and lead acetate reagent was added.	Yellow ppt. obtained	Cr^{3+} present & confirmed
2. Solid NH_4Cl was added to the second part of the filtrate and heated to dissolve.	A white gelatinous ppt. obtained	Al^{3+} present & confirmed
3. To the third part on a spot plate, Alizarin-S reagent was added followed by dil. acetic acid drop wise to just discharge the violet color of the reagent.	Red colouration or ppt. obtained. It was compared to a blank.	Al^{3+} present & confirmed

Experiment [C]: Group IIIB [Mn^{2+} , Ni^{2+} , Co^{2+} and Zn^{2+}]

Experiment	Observation	Inference
To the filtrate from group IIIA, H_2S was passed till complete precipitation. It was filtered.	Black / white / flesh colour ppt. obtained	Mn^{2+} , Ni^{2+} , Co^{2+} and/or Zn^{2+} present

Treatment of Group IIIB

The ppt. obtained was stirred with cold 1(N) HCl and filtered.

Residue: It was dissolve in aqua regia by heating and was evaporated nearly to dryness. Then it was dissolved in hot dil. HCl and was divided into two parts.

Experiment	Observation	Inference
1. To one part DMG reagent was added followed by NH_4OH till ammoniacal.	Rosy red ppt. obtained	Ni^{2+} present & confirmed
2. To other part equal amount of conc. HCl and conc. NH_4SCN was added followed by acetone	Deep blue colour obtained	Co^{2+} present & confirmed

Filtrate: H_2S was boiled off completely. 1-2 drops of H_2O_2 solution were added followed by excess NaOH . Then H_2O_2 was decomposed by heating and it was filtered.

Residue:

Experiment	Observation	Inference
The ppt. was dissolved in dil. H_2SO_4 containing a pinch of Na_2SO_3 . SO_2 was boiled off completely. Then it was cooled down and a pinch of sodium bismuthate was added and shaken. It was allowed to settle.	Pink colouration obtained	Mn^{2+} present & confirmed

Filtrate:

Experiment	Observation	Inference
To the filtrate H_2S was passed	White ppt. obtained	Zn^{2+} present
The ppt. was dissolved in minimum drops of dil. H_2SO_4 . H_2S was boiled off completely. 1 drop of 0.1% CuSO_4 solution was added followed by few drops of ammonium mercuri thiocyanate reagent and it was scratched with a glass rod.	Violet ppt. obtained	Zn^{2+} present & confirmed

Experiment [D]: Group IV [Ba^{2+} , Sr^{2+} and Ca^{2+}]

Experiment	Observation	Inference
Filtrate from group IIIB was acidified with dil. HCl and H_2S was boiled off completely. Excess NH_4OH was added followed by saturated $(\text{NH}_4)_2\text{CO}_3$ solution.	White ppt. obtained	Ba^{2+} , Sr^{2+} and/or Ca^{2+} present

Treatment of Group IV

Experiment	Observation	Inference
The ppt. was dissolved in hot dil. acetic acid. To a few drops of solution, K_2CrO_4 was added.	Yellow ppt. obtained (collect ppt.)	Ba^{2+} present & confirmed

If Ba^{2+} absent, proceed to the next stage with the rest of the solution

If Ba^{2+} present, add the K_2CrO_4 reagent to the rest of the solution to precipitate out Ba^{2+} and filter. Then proceed to the next stage with the filtrate.

To the solution/filtrate solid $(\text{NH}_4)_2\text{SO}_4$ was added and dissolved. It was filtered.	White ppt. obtained (collect ppt.)	Sr^{2+} present & confirmed
To the filtrate saturated $(\text{NH}_4)_2\text{C}_2\text{O}_4$ was added followed by NH_3 solution drop wise and the walls of test tube was scratched with glass rod.	White ppt. obtained (collect ppt.)	Ca^{2+} present & confirmed

Experiment with the collected ppt.:

Experiment	Observation	Inference
With the ppt. collected from the above experiment the Flame test was performed as usual.	Apple green flame obtained	Ba ²⁺ present & confirmed
	Crimson red flame obtained	Sr ²⁺ present & confirmed
	Transient brick red flame obtained	Ca ²⁺ present & confirmed

 Alternative Ways to Tests for Basic Radicals
 All Experiments are Confirmatory

#	Experiment	Observation	Inf.
Conc. HCl extract			
A	Extract + NH ₄ SCN	Blood red colour	Fe ³⁺
B	Extract + NH ₄ SCN + if red colour discharge with SnCl ₂ + acetone	Deep blue colour	Co ²⁺
C	Extract + NH ₄ OH (slight excess): if ppt., filter + DMG	Rosy red ppt.	Ni ²⁺
D	Extract + 2-3 iron nails: heat to reduce: filter to drops of cacotheline	Violet colour	Sn ^{2+/4+}
Conc. HNO ₃ extract			
E	Extract + NaBiO ₃ (a pinch): shake & settle	Purple colour	Mn ²⁺
F	Extract + NaBiO ₃ (a pinch): shake & settle: [if pink colour: add dil. HCl: heat]	Orange colour	Cr ³⁺
G	Extract + NH ₄ OH (excess): Discard ppt. if any: deep blue colour: acidify with acetic acid + K ₄ [Fe(CN) ₆]	Chocolate brown ppt.	Cu ²⁺
Dil. CH ₃ COOH extract			
To be prepared from the residue of Na ₂ CO ₃ extract preparation after thorough washing with water			
H	Extract + H ₂ S: if ppt., discard ppt.: boil off H ₂ S completely: follow treatment of group IV		
NaOH extract			
If S ²⁻ is present, heat the sample / residue from the residue of Na ₂ CO ₃ extract preparation with a few drops of dil. HCl to remove H ₂ S completely. Add excess of fresh dil. NaOH, heat carefully and filter, if necessary (if S ²⁻ is absent, treat sample directly with NaOH)			
I	Extract + H ₂ S: if ppt., filter: White ppt. (Zn ^{2+}): little dil. H₂SO₄: heat (till no H₂S evolves): filter, if required: few drops of solution in spot plate + 1 drop 0.1% CuSO₄ + few drops ammonium mercurithiocyanate: stir with a glass rod}	Violet ppt.	Zn ²⁺
J	Extract + H ₂ S: if ppt., filter: filtrate + dil. HCl (acidify): if ppt.: filter and boil off H ₂ S from filtrate: divide into two part. 1. Part 1 + excess NH ₄ OH 2. Part 2 + Fresh aq. NaOH (excess): to few drops of this solution + 2 drops of Alizarin-S reagent + dil. acetic acid drop-wise just to discharge the violet colour of the reagent.	1. White gelatinous ppt. 2. Red colour / ppt.	Al ³⁺

Analysis of Insoluble Part

Analysis of Aqua Regia Soluble Part:

Aqua regia soluble salts and their colours: NiS (black), CoS (black).

If the residue after HCl extract is of above colour, react with minimum drops of aqua regia, evaporate nearly to dryness. Finally extract with dil. HCl and test for Ni^{2+} and Co^{2+} (Group IIIB or Alternative tests #B or #C).

Analysis of Insoluble Part:

List of insoluble compounds:

Coloured: Ignited Cr_2O_3 : Deep Green
Ignited Fe_2O_3 : Rusty Brown

White: BaSO_4 , SrSO_4 , CaF_2 (also grey), Al_2O_3 , SnO_2

Isolation of Insoluble Part: After conc. HCl (aqua regia when required) extract, wash the residue several times by hot water containing a little dil. HNO_3 and finally dry it.

Preliminary Tests for Insoluble Part

No.	Test	Condition	Observation	Inference
A	Flame test	White insoluble	Apple green flame	BaSO_4
			Persistent crimson red flame	SrSO_4 / CaF_2
B	Borax bead test	Coloured insoluble	Green bead	Cr_2O_3
			Yellow bead	Fe_2O_3
C	Fusion test	Green insoluble & if Expt. B positive	Yellow mass	Cr_2O_3
D	Fluorescence test	White insoluble	Blue fluorescence	SnO_2
E	Test for F^-	White insoluble & if Expt. A shows crimson red flame	Oily liquid and the issuing vapour solidifies water drop	CaF_2

Wet Tests for Insoluble Part

A. For coloured compounds (Fe_2O_3 and Cr_2O_3):

Dissolution: The insoluble part was fused on a mica foil with fusion mixture, NaOH beads and crystals of KNO_3 . The melt was cooled and extracted with water and filtered, if necessary.

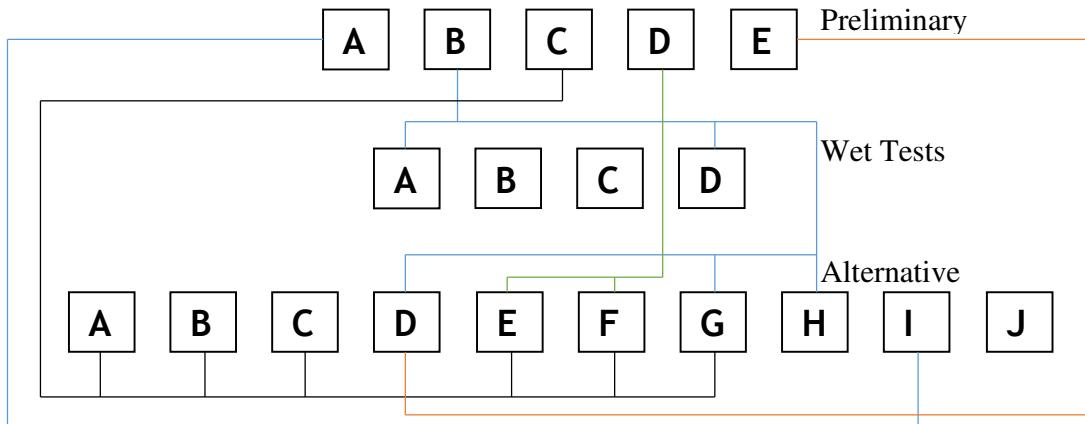
Residue: It must be brown (if available)

Experiment	Observation	Inference
Residue: It was dissolved in dil. HCl and NH_4SCN was added.	Blood red colouration	Fe_2O_3 present & confirmed
Filtrate: Filtrate was acidified with dil. acetic acid and lead acetate solution was added.	Yellow ppt. obtained	Cr_2O_3 present & confirmed

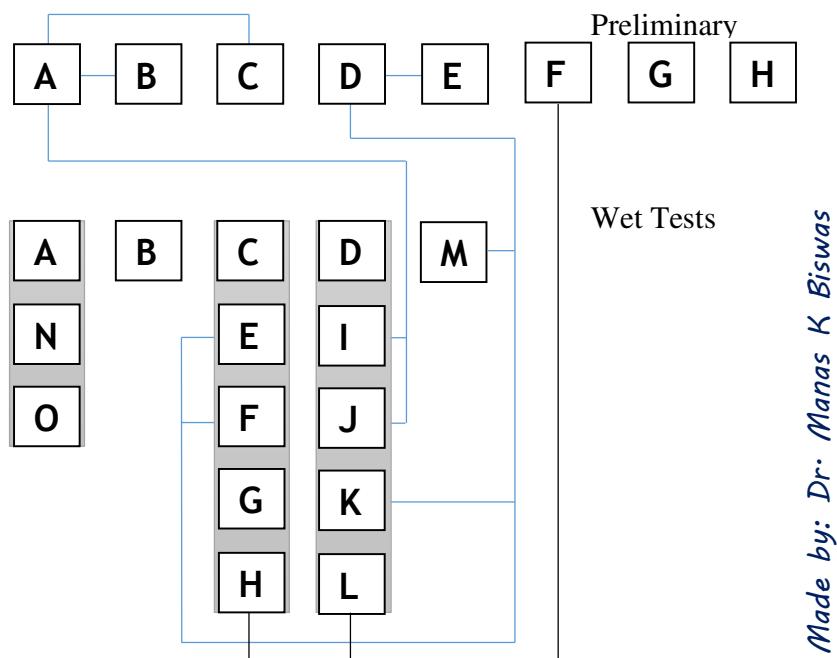
B. For white compounds (BaSO_4 , SrSO_4 and CaF_2)

Dissolution: The insoluble part was fused on a mica foil with fusion mixture, NaOH beads and crystals of KNO_3 . The melt was cooled and extracted with water and filtered.

Experiment	Observation	Inference
Residue: The residue was dissolved in dil. acetic acid and with the solution treatment of group IV was followed.	As per treatment of group IV	Ba^{2+} , Sr^{2+} or Ca^{2+} present & confirmed
Filtrate: Filtrate was acidified with dil. HNO_3 and $\text{Ba}(\text{NO}_3)_2$ was added.	White ppt. obtained	SO_4^{2-} present & confirmed

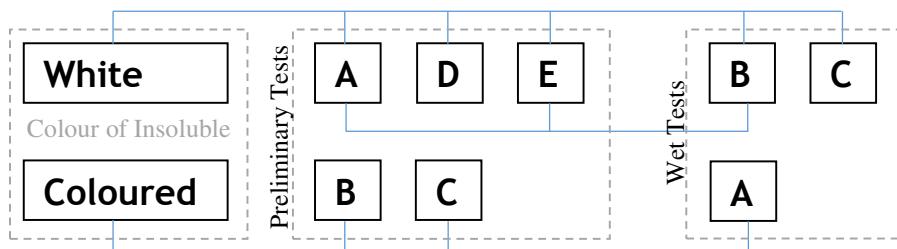

C. For white compounds (Al_2O_3 and SnO_2)

Dissolution: The insoluble part was fused with KHSO_4 for few minutes, cooled and extracted by heating with dil. HCl. With the solution following tests were performed in the given order


Experiment	Observation	Inference
One part of the solution was heated with a little conc. HCl and iron nails for 1-2 minutes and was filtered directly to cacotheline or HgCl_2 reagent.	Purple colouration or white/grey ppt. obtained	SnO_2 present & confirmed
Excess of fresh NaOH was added to the second part to make it alkaline. <u>If SnO_2 absent:</u> Alizarin-S test for Al^{3+} was performed. <u>If SnO_2 present:</u> H_2S was passed through the alkaline solution and then it was acidified with dil. HCl and filtered to remove the ppt. The filtrate was heated to boil off H_2S , made alkaline with excess of NaOH and with the solution the alizarin-S test for Al^{3+} was performed.	Red ppt. or colouration compared to a blank	Al_2O_3 present & confirmed

LOGIC GATES

For Analyses of Basic Radicals



For Analyses of Acid Radicals

Made by: Dr. Manas K Biswas

For Analyses of Insoluble Part

